Street Trees as a Source of Timber in Washington, DC

ALEX GRIEVE galexa2@vt.edu

VIRGINIA TECH DEPARTMENT OF FOREST RESOURCES AND ENVIRONMENTAL CONSERVATION

APRIL 11, 2017

Introduction

o Urban timber o Reclamation o Cost savings o Potential business o Desire for sustainable practices o Need for research

Research Scope

- o Washington DC
- o Assessment of street tree timber stock
- o Six most abundant species
- o Randomized observational study

Research Questions

o What is the quantity of urban timber?
o What is the quality of urban timber?
o What is the feasibility of urban timber?
o What is the presence of metal in trees?

Sampling Scheme

Legend

- Condemned Trees
- Non-condemned Trees

Zoning

<u>Goal:</u> 6 species x 6 zones x 5 reps = 180 trees

n=149

n=72

Land-use Zones

R-4

Non-residential

Grading Methods

- o Trunk Diameter (at 4.5' AGL)
- o Log Length (feet)
- o Clear wood (feet; percent)
- o External defects
 - Knots (count)
 - Scars (count)
 - Decay (percent)

Log Grades

Volume measurements

- o Board feet
- o International log rule
- o What are the dimensions?

 Board Feet International = 0.049×Length×Diam² + 0.006×Length²×Diam -0.185×Length×Diam + 0.0002×Length³ -0.012×Length² + 0.042×Length

Recovery Feasibility Protocol

- o Tree characteristics
- o Removal logistics
- o Infrastructure barriers
- o 11 criteria (possible score 1 to 4)
- Total feasibility score: 11(high feasibility) to 44 (low feasibility)

Metal Count Measurements

- o Visual Inspection
- Two feet above and below DBH
- o Staples count
- o Nails count

Log Prevalence

Species P=0.045	Sample trees (#)	Trees with logs (#)	Prevalence of logs (%)
Acer platanoides	21	8	38
Acer rubrum	26	6	23
Acer saccharum	24	7	29
Quercus palustris	30	17	57
Quercus phellos	20	12	60
Quercus rubra	28	13	46
Total	149	63	42

Log Distribution by Species

DBH Distribution of Trees with Logs

Log Volume by Species

Total Log Volume in DC

- Results presented so far are per-tree basis
- o Need "whole forest" estimates
- o Final aspect of our study
- How much total log volume is generated annually by routine removals?

Volume by DBH Class

			Mean Butt Log	95% CI of Mean Butt Log	Standard Deviation of	Total Butt Log	95% CI of Total Butt Log Volume
Log Diameter	Ν	n	Volume (ft. ²)	Volume (ft. ²)	Mean	Volume (ft. ²)	(ft. ²)
12–18 in.	72	11	51	47 – 55	17	3684	2874 - 4494
19–24 in.	72	25	76	71 – 82	27	5554	4751 – 6357
25–30 in.	40	15	158	150 – 167	52	6317	5166 – 7468
31–36 in.	20	5	222	213 – 231	46	4403	3271 – 5536
37–42 in.	30	4	292	282 – 303	49	8816	6437 – 11195
Over 42 in.	18	3	426	385 – 467	230	7729	0 – 18105

Total Log Volume in DC

- o 36,500 Board Feet (condemned trees for the top six species)
- o 64,000 Board Feet (all condemned street trees)
- o What does this mean?

Feasibility of Removal

Feasibility of Removal

Land-Use Zone

Metal Prevalence

		Logs with Any		Logs with	
	Total Butt Logs	Metal Object		Nails	
	(#)	(#)	(%)	(#)	(%)
Removal status			(p=0.0097)		(p=0.0006)
Condemned	63	51	80	24	38
Non-condemned	53	32	59	6	11
Land-use zone			(p=0.3560)		(p=0.5412)
R-1	15	10	67	4	27
R-2	10	10	100	2	20
R-3	13	11	85	7	54
R-4	11	8	73	5	45
R-5	10	8	80	4	40
Non-residential	4	4	100	2	50
Species			(p=0.5029)		(p=0.7353)
Acer platanoides	8	6	75	2	25
Acer rubrum	6	4	67	2	33
Acer saccharum	7	7	100	2	29
Quercus palustris	17	15	88	6	35
Quercus phellos	12	10	83	7	58
Quercus rubra	13	9	69	5	38
Log grade			(p=0.1287)		(p=0.5717)
Grade 1	3	1	33	0	0
Grade 2	13	10	77	5	38
Grade 3	47	40	85	19	40

Conclusion

- Volume of grade logs in condemned street trees is very limited
- High quality timber is scarce in condemned street trees
- Condemned oaks tend to have
 higher quality wood then maples
- There is a large volume of low quality wood removed annually...what to do with it?

Source: Michigan State Shadows

Conclusion

- Feasibility of salvage is highly variable no clear relationship to land use or species
- Metal exists in the majority of condemned street trees
 - No relationship to land-use zone, species, and grade
 - Nails are less frequent than other types of metal

Considerations

- Focused on street trees condemned for removal
- o Small sample size
- o Applicability of grading techniques
- o Sample stratification
- o Limited range of species

Future studies

- Forward desirable characteristics
- Comparisons between park and street trees
- Comparisons between insect invested trees and routine removal

Wood characteristics (durability)

Acknowledgements

Graduate Committee Dr. Eric Wiseman (chair) Dr. Susan Day Dr. Phil Radtke

Project Sponsors Casey Trees Davey Tree Experts Data Collection Support Robert Corletta, DDOT Gerald Grieve Tyler Hemby John Peterson, VA Tech

Casey Trees[®] WASHINGTON DC

Thank You

Questions?